[0093] The results showed substantially improved sensitivity using the ProteoMiner™ method of the present application. Although most of the proteins measured were present at very low level before ProteoMiner™ treatment, the relative concentrations of the same proteins were substantially increased after the ProteoMiner™ treatment. The sensitivities in detecting these low abundance proteins were improved significantly, since most HCPs were enriched more than 100 fold as shown in Tables 10 and 11. In particular, one selected HCP was enriched more than 1000 fold as shown in Table 10. The ProteoMiner™ method of the present application was able to increase the signal of each HCP significantly to reduce the dynamic range of the protein concentrations in the sample. ## Example 7. Comparison Between Filtration Method and ProteoMinerTM Method [0094] The efficiencies of HCP enrichments were compared between ProteoMinerTM and filtration (filter) method for the detection and identification of HCPs in samples containing antibodies. 1.5 mg of mAb3 and HCPs were dissociated in SDC and SLS cocktail buffer, after dissociation, the HCPs can be separated from antibody by applying 50K MWCO filter. (Chen et al. Improved Host Cell Protein Analysis in Monoclonal Antibody Products through Molecular Weight Cutoff Enrichment. *Analytical Chemistry* 2020 92 (5), 3751-3757). The numbers of HCPs which were identified with two peptides are shown in FIG. 5A and FIG. 5B for filter and ProteoMinerTM methods (The IP result is the combined result that from all different lots of mAb3 and mAb4.). The testing results of the spiked-in HCPs were shown in Table 12. Thirteen purified HCPs from CHO cells with varied concentrations ranging from 0.1 ppm to 200 ppm were spiked into samples containing purified mAb3 for testing. As shown in Table 12, ProteoMinerTM method showed higher identified PSM and higher unique peptides overall. TABLE 12 | Spiked-in
Final
ppm | Protein Name | Molecular
Weight | Identified
psm
(filter) | Unique
Peptides
(filter) | $\begin{array}{c} \text{Identified} \\ \text{psm} \\ (\text{ProteoMiner} \ ^{\text{TM}}) \end{array}$ | Unique
Peptides
(ProteoMiner TM | |---------------------------|--|---------------------|-------------------------------|--------------------------------|---|---------------------------------------| | 200 | Beta-
hexosaminidase | 60.1k | 64 | 10 | 116 | 22 | | 100 | Carboxypeptidase | 54.2k | 240 | 25 | 268 | 30 | | 50 | hPLBD2 | 65k | 8 | 3 | 362 | 11 | | 20 | Cathepsin Z | 34k | 62 | 17 | 327 | 16 | | 10 | SIAE | 61.4k | n/a | n/a | 81 | 15 | | 10 | Cathepsin D | 44.1k | 12 | 4 | 211 | 16 | | 5 | Metalloproteinase
inhibitor 1 | 22.4k | 13 | 3 | 46 | 8 | | 5 | LAL (half
dimer/monomer) | 45.6k | n/a | n/a | 99 | 10 | | 5 | peptidyl-prolyl
cis-trans
isomerase | 23.6k | 96 | 11 | 108 | 12 | | 1 | c-x-c motif
chemokine | 11k | 31 | 4 | 26 | 3 | | 1 | Transtheyretin | 17k | 34 | 4 | 36 | 6 | | 0.5 | Acid ceramidase | 44.7k | n/a | n/a | 52 | 12 | | 0.1 | Procollagen C
endopeptidase
enhancer 1 | 55.2k | n/a | n/a | 4 | 2 | Example 8. Repeatability Test [0095] The repeatability of the ProteoMiner™ method of the present application for HCP enrichment was tested using mAb4. 15 mg of samples containing mAb4 and HCP impurities were tested using ⅓ of the ProteoMiner™ kit. Three replicates were conducted. As shown in Table 13 and FIG. 6, the results show good repeatability based on match to IP results. TABLE 13 | | Repeatability tests of ProteoMinerTm method for HCP enrichment | | | | | | | | | | | |----------------|--|-----------------------|-------------------|--------------------------------|---------------------------------------|--|--|--|--|--|--| | | Sample
Amount | Peptide
Amount | Total
ID | High
Confidence
(>2 pep) | DS PSM
(heavy/light) | Match
to IP
result
(>2 pep)
(total 48
targets
from IP) | Match
to IP
result
(include
1 pep)
(total 48
targets
from IP) | | | | | | 1.
2.
3. | 15 mg
15 mg
15 mg | 21.7
24.5
22.35 | 142
137
138 | 73/(12)
62/(10)
74/(9) | 9733/4152
10580/4579
11264/4845 | 19
19
22 | 24
25
24 | | | | |